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ABSTRACT

The segmented approximation problem is that of finding, for a

given function x, a set of n functions yi in some collection such

that the supports of the yi are pairwise disjoint while some functional

of x-Y -**' -Yn is minimized. The recursive functional equation for

the "error" of the best approximation by n functions is obtained and

continuity of the "error" as a function of the set on which approximation

occurs is derived from weak conditions on the functional. The

allocation of the reduction in "error" attributable to each of the y

is studied and the hereditary nature of an equal allocation principle

is established.



APPROXIMATION AND ALLOCATION

Arthur Wouk

1. Let X denote a collection of vector valued functions x = x(t) from

the real line - 00 < t < o0 into some normed linear vector space V . The

support of x F X is the complement of the largest open set on the t-line on

which x(t) is the zero vector; it will be denoted by S . The segmentedS~x

approximation problem is that of finding, for a given x E X, a set of n vector

valued functions yI, 1' " yn' contained in some given subset M of X, such

that in some sense, no t is in the support of more than one of the yi, while

some functional 59 applied to x - yi - . . . -yn is minimized. Of particular

interest in numerical computation are those subsets M of X which contain

on]y "trapezoidal functions" (functions whose support is a finite interval.)

Functionals of interest are, for example,

(1. 1) sup a < t < b 114l

where -o <a < b <oo and l1- I is the norm in V, and

b(1.2) f lixtt)l[p dp(t) I <_p < 0
a
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where p(t) is some monotone nondecreasing function of t; in the latter case

X must be restricted to p-measurable vector valued functions. Special cases

of these problems have been treated (cf. e.g. , [13, [2], [3], [4]) where the

functions y are trapezoidal, and either linear or step functions of t

on their support, and x is a continuous real valued function of t . The

structure of many of these problems is easily seen (cf. [1]) to be an allocation

problem; in the case of the supremum norm, it is characterized by the principal

that

in the best approximation. the amount of reduction in _ attributable

to each of the yi is the same.

This permits a recursive approach to the best approximation by n functions y
1

and requires for computational purposes only knowledge of the best approximation

by one function y on suitably arbitrary subsets of Sx . (This recursive approach

is of the type popularized by Bellman under the name dynamic programming.)

In the present paper general properties of y are studied, and a weak

form of the allocation principle is associated with properties of the best single

function approximation. Further papers will consider the consequences of the

allocation principle, and specific computational procedures for segmented

approximation.

2. In the examples above, 5C (or a power of • ) is itself a norm on X; if

X is a linear space and V is complete, then 5r makes X a complete space.

It might seem that these are the properties of • which are essential to
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approximation. If the approximation theory is to be compatible with the linear

structure of X so that the sum of two approximations is an approximation to

the sum, then this is so. If instead the problem is posed relative to a fixed

vector valued function x, this is no longer so. The basic arguments in the

proof of the allocation principle are on certain monotonicity and continuity

properties of S' and on the "adequacy" of the set M To make matters

precise, suppose that x has support in a fixed interval [a,b], -oo < a < b < oo

and that V (x) is defined (possibly infinite) for all arguments usedbelow.

A partial ordering of vector valued functions will be used: x -< y means

x(t) = yWt) for all tf S Two vector valued funccions x and y arex

said to be disjoint if ! (z) = 0 for every zc X with S CS 'rS . Letz x y

01 satisfy the following conditions:

(a) Uf x y, then ;( (x) ( y);

(b) if {xs . is a collection of elements of X, 0 <_s < oo such

that x -< x:, whenever s > s' (hence S is a decreasing5 x
s

sequence and x = lim x exists), then 5 (xS) - 1 (x), s 00

(c) t0(=0 =

The approximation problem may now be restated: given x c X and a fixed sub-

set M of X, find a set of n functions yV "*',Yn in M such that

(i) if i # j, then yi and y, are disjoint;

and
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x - -"y is a, mininmum.

In order to lend interest to the problem, M must contain a reasonable number

of functions; most important for the arguments will be the following:

(dy if E is any subinterval of [a,b] with characteristic function

XEY and y i M, then y XIE M

If sets are ordered by inclusion,, then (a) implies that I1 (x - XE) is a non-

decreasing set function; (b) implies it is an "outer" continuous set function,

-while (c) makes it nonnegative. Together (a) and (d) imply

(2.)V ((x -y) XE) < i((x- Y) -XE

whenever EC E . If E sis a decreasing collection of sets with E limr E ,

then (b) implies (X -) XE }- ((x -y) -xE), s - o (outer continuity.)

Then for any collection M the following holds:

Theorem 2. 1 The set function

F I(E) = inf Y * M 5 ((x -yA XE)

exits, an is an outer continuous nonneclative nondecreasing function of sets

ordered by inclusion.

The only nonimmediate fact is the outer continuity of F. Suppose in fact

that for some collection of sets E which is decreasing and convergent to E it
5

is true that
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where c is some positive number. Then

((x- y) X ×E )- > F1 (E) + c
S

for any c . Choose y so that

FI(E) > j ((x-y).E -E

Then

,• ((x-y) XE) > ((x-y) A E) + c/Z

sE

for all s, which violates the outer continuity of .

Let {y,' " ."Yn} = {Yi}n denote a collection of n pairwise disjoint

elements of M whose supports cover [a,b] . Define

F2 (E) inf {yi} ((x-yl--yZ) - XE)

Suppose further that for any disjoint two sets E, E', there is defined a binary

operation g such that

•(x.XE E,) = V * (x.XE) 5 (x .XE);

there @ is a binary operation on real numbers c = c(a,b) = a 0 b which is a

commutative, associative, and continuous nondecreasing function of both

arguments and which satisfies a 0 0 = 0 0 a = a . Then
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F = l(yinf ((x-yl) • xE. S 0 ((x-y 2 ) •S )yi 2  yzyz

SnTC E nfS C E -T inS y2 T ((x -yI). XE, - T)8 ((x-yz} • XE)

= infT E F(E- T) 9 FI(T)

Then F2 (E) isa nonnegative, nondecreasing outer continuous set function.

Again the only part of this statement which is nonimmedlate is the outer

continuity. Suppose in fact that F2(E')->_ F2 (E) + c, c > 0, for every E' D E

Then for any TC E

FI(T) 9 FI(E' -T) > F2(E) + c

Since F1 is outer continuous, this implies

FI(T) 9 FI(E-T) ?>F 2 (E) + c

for any TC E and hence Fz(E) _ F2(E) + c, which is impossible. Next we

observe that F2(E) < FI(E) since a 9 0 = a If Fn(E) is defined as

Fn(E) = inf{yi}n ((x- ylyz-... y) • XE)

then a similar reasoning shows the truth of
Theorem 2. 2: F n(E) is a nondecreasing nonnegative outer continuous set

function as a function of n it satisfies
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(2.2) Fn(E) < Fnk(E) , k=l, ... , n-i

Lastly it satisfies the functional equations

(2.3) Fn(E) -infTC EFk(T) 0 Fnk(E-T) , k=l, ... , n-i

and

(2. 4) Fn(E) f inf {T } FI(TI) 0 FI(T{) 0 ... 0 FI(Tn)

where E =T 1 Q T2 J... 2 JTn ad T 1 --f ij

If, in (1. 1), N(t) is continuous (in the strong sense), or, in (1. 2), p(t) is

absolutely continuous, then is also "inner continuous": that is EsC E

for s< s' and E=limE imply
S-•

lr , (x .X S) = # (x *XE)

Then

Theorem 2. 3: If I is also inner continuous, then §o is Fn(E) for all n and

is in fact a continuous sot function.

The proof is this is essentially the same as the proof of Lemmas 1 and 2. If 5

is both inner continuous and outer continuous, then it is called continuous.

3. In the absence of strong assumptions on the completeness of M with

respect to • , it is not possible to assert the existence of best segmented



-8- #382

approximations and give a proof of the alLocation principle. However, the

formal nature of the problem is already som strongly determined that it is

possible to prove the equivalence of a r-3-ther "naive" analytic property of

F1 to a weakened form of the allocation jprinciple. This is the following:

Weak Allocation Principle: Given aray set E and any C > 0 there exists

a collection of n sets, {T } such that

i) Ti r-%T j = , i * P i, j~ 1 .., n;

ii) E = T I1-JT 2  uT ;

iii) F1(TI) = Fi(Tz) ... = FI(Tn);

iv) Fl(T 1) 0 F1(T2 ) 0 ... 9F(Tn) Fn(E) + £

An alternative form is the following:

iv') FAE) if{T}n FI(TI) I(T{) 9..- FI(Tn)

where {Ti}n is any collection of sets sa-tisf1ying i), ii), and iii)

Theorem 3. 1 The weak allocation princtLe holds if and on.ly if for every set

E and any constant S > 0 there exists a set TC E such that

i) F1(T) 0 F1(T) < Fz(E) + ;

ii) F1(T) _> F(E- T)

Proof: It may be supposed that FI(E) > O; 11 not, the theorem is vacuously

true. The following lemma is at the bottrom of the proof:
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If E =A'JB where AB = and F1 (A) > FI(B), then there exists

A'C A and B' D B such that FI(A') = FI(B') . The deformation A-. A', B-.B

is continuous.

To see Lhis, consider the one parameter family of sets A = A r% [tl, s]

where t, <_ t and E is contained in (tlIt2) . Also consider B = E - As

Then FI(As) is a continuous nondecreasing function of s, FI(Bs) is a

continuous nonincreasing function of s, and

FI(Atl) 1 0 < FI(E) FI(Bt )

while

F1(At ) = FI(A) > FI(B) = FI(Btt •

Hence for some s, FI(As) FI(B s .

Suppose now that the weak allocation principle I is true. Then, in particular,

for any E,

(3.1) F2(E) = inf{TC EI FI(T)= FI(E-T)} F1(T) ) F1(E-T)

so that for any 6 > 0 there exists a set T satisfying i) and ii:) . Conversely,

suppose that for any E and any E > 0 there exists TC E satisfying i) and

ii) . Then the lemma implies that there exists T' C T such that

F2 (E) < F1(T') 0 FI(E- T') <_ FI(T) 9 F1(T) < F2 (E) + E
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Then (3.1) is true.

Next the conditions i) and ii) must be lifted to the case of decompositions

of E into three sets (and then by induction into n sets for any n .) The

lifting process goes as follows: from the definition of infimum we conclude the

existence of {T }3 such that

FI(TI) 9 F1(T 2) 0 FI(T 3 ) <_ F 3 (E) + r - v

for any positive numbers il, y such that 9 - y > 0 . The lemma implies that

it is always possible to choose {T }3 so that FI(T)I FI(T2 ) > FI(T3 ) . Should

FI(T 2) = F1(T3 ), nothing needs to be shown; suppose instead that a strict

inequality holds. Now FI(T 2) 9 FI(T3  F(T? . T3 for some c > 0

Then there exists a decomposition of T k-' T into T2' _' T3' such that
2 3 2 3

T2'CT T3T T39 and2 2'3 3

F1(T2 K) - F1(T 3 ) 3 1/2 {FI(T2 ) -F1 (T 3 )}

while

F (T2
1) 0 FI(T 3 ) < FI(TZ) 0 FI(T 3)

This follows by using (i), (ii) and modifying slightly the proof of the lemma

above. Then,

FI(TI) 9 F1(T 2 ') 0 FI(T 3 ) <_ F 3(E) + • - v
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direct application of the lemma permits the replacement of and T3' by

a new pair of sets T I and T3 * with FI(TI )> FI(TZ'_ FI(T3*) and

Fl(TI*) 0 FI(Tý) e FI(T3 *) < F3 (E) + v - V

where either FI(TI*) = FI(T 2 ) or F1(T 2 ) = FI(T3 *) ' If FI(TI*) = FI(T 2 ')

notice that

FI(T1*) - FI(T 3*) < FI(T2 ') - FI(T 3 .)

<_ 112 {FI(TI) - F1(T 3 )}

If instead, FI(T2
1) = F1(T3 then use the fact that

F1(T') = FI(T 3 ') + 1/2 {FI(TI) -F 1(T 3)}

> 1/2 {FI(T1) - Fl(T 3 )}

to conclude that

FI(T,*) - FI(T 3 *) < FI(T1) - FI(Tz-)

< 1/2 {F 1(TI} - FI(T 3 )}

Thus it is always possible to assume, for any 6 > 0, that the {Ti} 3 are

such that F,(TI) = FI(T2 ) > FI(T3) > FI(TI) - 6

The function c 0 -y y is a continuous function of the three variables on

the closed set 0 < a<_ F(E), 0 < lF(E), 0 < y < FI(E) . Hence it is
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uniformly continuous there; given any y > 0 there is a 6 > 0 such that

icepQ(y -A) -a0PQ y[ < vif I&I< 6

Thus it can: be asserted that

(3.,3) FI(Tl) 9 Fl-(T) 9 FI(Tl) <_ F3(E) + .

This lifts (i) to the present case while (ii) has always been preserved. If

Tls and T s have the customary meaning and T = E - TIs - T2s then the

lemma is reapplied to rearrange Ts and Ts, for each s, to make

FI(T () = T1(T 2s) . Then for some s, Fl(Tis) is the same for i = 1, 2, 3, while

(3. 3) is preserved. This lifts the lemma. Thus it has been shown that the weak

allocation principle holds for n = 3 . The inductive argument is now clear.

The uniform continuity of the iterated binary operation i$ still available, and

the lifting argument for passing from (i) to its equivalent for {T.) goes over
1 3

directly to the general case. The general form of the lemma also presents no

difficulties.

Theorem 3.1 can be viewed as saying that if the weak allocation principle

holds for n = 2, then it holds for all n > 2 . It would be desirable to show

that if the weak allocation principle holds for some n = N > 2, then it holds

for n = 2 (and hence for all n.> 2 .) The present assumptions on M and

do not yield this result; instead the following weaker result will be established:

Theorem 3. 2: If c 0 c is a strictly increasing function of c and if there is a

positive constance 6 such that for any set E
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(3.4) (1+6) F (2 <_irnf{Fl(T) = F1(_E -T)} F1(T) 0 F (E-T)

then the weak allocation principle does not hold for any set E with Fn(E) > 0

n> n

Proof. Since N 2 2 is trivial, let N > 2 and FN(E) > 0 . For any decomposition

of E

(3.5) FN(E) < F2(TI'J TZ) 9 FN - 2 (E -T,' 11 TZ)

6 [(i+ - [F1(T1) 0 F1(T)] ] 0 Fl(T 3 ) 9 ... 9 Fl(TN)

< F1(TI) 0 FI(T 2 ) 0 ... 9 F1(TN)

We may of course assume F,(T,) constant, i = 1, ... , N
As a function of c ,

N

fN(c) = c Q c ... Q c

is strictly increasing; then there is a c > 0 with FN(E) = fN(c) . Furthermore

(3.5) implies FI(Ti) > c, i = 1, ... , N . Also, there exists a A >0 such that

+ [cc] c 0c... c+ A< f c).

From (3.5) it follows that

(3.6) FN(E) <_F 2(Tl .J T2 ) B FN- (E-T 1 T, T2)'+ A< F1(Tl) ... FI(Tn).

Taking the infimum of (3. 6) for all admissable decompositions of E implies

FN(E) + A < inf {T FI(TI) 0 ... 0 FI(TN)
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which contradicts the possibility that the weak allocation principle holds

for n = N

Notice that if 6 were dependent upon the set E, and not bounded away

from zero, then A would not be bounded away from zero and the contradiction

would disappear. Also remark that if the assumptions on M and 5 were such

as to guarantee that the infimum was achieved for some decomposition of E

then the above proof can be reworked somewhat to show that the weak allocation

principle for n N > 2 implies the principle for n =2 (and hence for all

n>2 .)
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